Publications of the Marquardt group

From Institute for Theoretical Physics II / University of Erlangen-Nuremberg

Revision as of 11:19, 3 August 2017 by FlorianMarquardt (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
  • New Marquardt group (theory division) website at the Max Planck Institute for the Science of Light. The Marquardt group entries on the present website will be discontinued (effective August 2017), except for the teaching part of the website.


This page lists publications from the Marquardt group, in reverse chronological order. We start with a few recent highlights. You find the reference list further below.

BifurcationA.png

Coupled spin-light dynamics in cavity optomagnonics (Viola Kusminskiy, Tang, and Marquardt, 2016) - In optomagnonic cavities, light couples parametrically to magnons via the Faraday effect. This coupling was demonstrated very recently, in two experiments appearing at the end of 2015. In this article, we derive the microscopic Hamiltonian of the system and study the optically induced dynamics of a homogeneous magnon mode. We show that the system exhibits a plethora of nonlinear effects, such as chaos and self-sustained oscillations, which should be tunable and experimentally observable in current setups.

Deampl.png

Sensing enhanced by de-amplification (Peano, Schwefel, Marquardt and Marquardt, 2015) - In this article we show that the precision of position detection can be enhanced by the squeezing generated internally in an optomechanical parametric amplifier. Counterintuitively, the enhancement of the signal-to-noise ratio works by deamplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information.

Dyngauge.png

Dynamical Gauge Fields in Optomechanics (Walter and Marquardt, 2015) - In this article we show that the most basic phonon-assisted photon tunneling process which is due to an optomechanical interaction leads to a scenario where phonons can act as a dynamical gauge field for photons, compared to previously studied static gauge fields. In the optomechanical setting these dynamical gauge fields arise in quite a natural manner. The mechanical oscillation phases determine the effective artificial magnetic field for the photons, and once these phases are allowed to evolve, they respond to the flow of photons in the structure. New Journal of Physics

Topologicalphasessetupfig.png

Topological phases of sound and light (Peano, Brendel, Schmidt, Marquardt 2015) - A Phonon Chern insulator is formed when an optomechanical array is driven by a laser with an appropriate pattern of phases. The resulting chiral, topologically protected phonon transport along the edges can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases. This work was also highlighted in Nature Photonics.


2015SchmidtPhotonMagneticFields.png

Optomechanical magnetic fields for photons (Schmidt et al. 2015) - The optomechanical interaction between mechanical vibrations and light can be used to produce artificial magnetic fields for photons, in a tuneable way that is not tied to the geometry (as other approaches are) and is controlled entirely optically. This work was also highlighted in Nature Photonics.


2013Metamaterials.png

Optomechanical Dirac Physics (Schmidt, Peano, Marquardt 2015) - Photonic crystals with many localized photonic and phononic modes could be used to form 'optomechanical arrays'. This paper predicts that engineering their optomechanical band structure gives access to many phenomena usually known in condensed matter. In particular, we predict optomechanical variants of the Dirac physics known from graphene, now affecting the transport of photon-phonon polaritons on a honeycomb lattice.

2013TangSync.png

Optomechanical synchronization (Bagheri et al 2013) - In this experiment of the Tang group at Yale, two 'distant' nanomechanical resonators are coupled via the optical field inside a racetrack optical cavity. Their oscillations are observed to synchronize, which had previously been demonstrated only for disk resonators almost touching each other. In addition, novel features like peculiar sidebands in the observed mechanical spectrum show up. These hint at dynamics beyond the most widely used models of synchronization.


2013KesslerCurrents.png

Where do the currents flow? (Kessler, Marquardt 2014) - In optical lattices, it is now experimentally possible to detect the precise location of single atoms. This paper suggests that this novel tool could also be used to take 'snapshots' of current patterns. These fluctuating patterns could reveal, via their statistics, important information about quantum many-body states of ultracold atoms, e.g. when an artificial magnetic field is applied.


2013KronwaldOMITNonlinQR.png

Signatures of quantum nonlinearities (Kronwald, Marquardt 2013) - Optomechanical experiments are not yet able to observe indications of the nonlinear quantum nature of the optomechanical interaction. However, experiments are coming closer to this "nonlinear quantum regime". In this work, we propose a way how first indications of this nonlinear quantum regime could be observed in a two-tone driving experiment using near-future optomechanical devices.

2013Shuttle.png

Shuttling electrons, one by one (Moeckel et al. 2014) - Nanomechanical electron shuttles are little metallic islands that vibrate between electrodes, carrying electrons from one electrode to the other. In principle, they could be exploited to produce a precise current standard, essentially by counting the number of electrons. However, keeping track of the count is not so easy. In this paper, it is shown that the nonlinear dynamics of such a shuttle permits a trick: synchronization of self-oscillations to an external drive. This could drastically increase the precision.


2017

  • Quantum-coherent phase oscillations in synchronization

Talitha Weiss, Stefan Walter, and Florian Marquardt, Phys. Rev. A 95, 041802(R) (2017) Journal

  • Pseudomagnetic fields for sound at the nanoscale

Christian Brendel, Vittorio Peano, Oskar Painter, and Florian Marquardt, doi:10.1073/pnas.1702237114 (2017) Journal

  • L lines, C points and Chern numbers: understanding band structure topology using polarization fields

Thomas Fösel, Vittorio Peano, and Florian Marquardt, arXiv:1703.08191 (2017) Journal PDF

  • Snowflake Topological Insulator for Sound Waves

Christian Brendel, Vittorio Peano, Oskar Painter, and Florian Marquardt, arXiv:1701.06330 (2017) Journal PDF

  • Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering

Kejie Fang, Jie Luo, Anja Metelmann, Matthew H. Matheny, Florian Marquardt, Aashish A. Clerk, and Oskar Painter, Nature Physics 2017 (Advance Online Publication) Journal

  • Anderson Localization of Composite Excitations in Disordered Optomechanical Arrays

Thales Figueiredo Roque, Vittorio Peano, Oleg M. Yevtushenko, Florian Marquardt, New J. Phys. 19, 013006 (2017) Journal PDF

2016

  • Dynamical Gauge Fields in Optomechanics

Stefan Walter and Florian Marquardt, New Journal of Physics 18, 113029 (2016) Journal PDF

  • Topological quantum fluctuations and travelling wave amplifiers

Vittorio Peano, Martin Houde, Florian Marquardt, and Aashish Clerk, Phys. Rev. X 6, 041026 (2016) JournalPDF

  • Quantum Theory of Continuum Optomechanics

Peter Rakich and Florian Marquardt, arXiv:1610.03012 (2016) Journal PDF

  • From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators

Roland Lauter, Aditi Mitra, Florian Marquardt, arXiv:1607.03696 (2016) Journal PDF

  • Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, Phys. Rev. Lett. 117, 100801 (2016) Journal PDF

  • Coupled spin-light dynamics in cavity optomagnonics

Silvia Viola Kusminskiy, Hong Tang, and Florian Marquardt, Phys. Rev. A 94, 033821 (2016) JournalPDF

  • Many-particle dephasing after a quench

Thomas Kiendl and Florian Marquardt, arXiv:1603.01071 Journal PDF

  • Topological phase transitions and chiral inelastic transport induced by the squeezing of light

Vittorio Peano, Martin Houde, Christian Brendel, Florian Marquardt, and Aashish Clerk, Nature Communications 7, 10779 (2016) Journal PDF

  • Noise-induced transitions in optomechanical synchronization

Talitha Weiss, Andreas Kronwald, and Florian Marquardt, New Journal of Physics 18, 013043 (2016) Journal PDF

2015

  • Quantum simulation of expanding space-time with tunnel-coupled condensates

Clemens Neuenhahn and Florian Marquardt, New Journal of Physics 17, 125007 (2015) Journal PDF

  • Intracavity squeezing can enhance quantum-limited optomechanical position detection through de-amplification

V. Peano, H. G. L. Schwefel, Ch. Marquardt, F. Marquardt, Phys. Rev. Lett. 115, 243603 (2015) JournalPDF

  • Position-squared coupling in a tunable photonic crystal optomechanical cavity

Taofiq K. Para?iso, Mahmoud Kalaee, Leyun Zang, Hannes Pfeifer, Florian Marquardt, Oskar Painter, Phys. Rev. X 5, 041024 (2015) Journal PDF

  • Topological Phases of Sound and Light

Vittorio Peano, Christian Brendel, Michael Schmidt, and Florian Marquardt, Phys. Rev. X 5, 031011 (2015) Journal PDF - highlighted in Nature Photonics

  • Magnon dark modes and gradient memory

Xufeng Zhang, Chang-Ling Zou, Na Zhu, Florian Marquardt, Liang Jiang, Hong X. Tang, Nature Communications 6, 8914 (2015) Journal PDF

  • Quantum squeezing of motion in a mechanical resonator

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, Science 349, 952 (2015) Journal PDF (preprint)

  • Optomechanical creation of magnetic fields for photons on a lattice

M. Schmidt, S. Keßler, V. Peano, O. Painter, F. Marquardt, Optica 2, 635 (2015) JournalPDF - Highlighted in Nature Photonics

  • Nonlinear radiation pressure dynamics in an optomechanical crystal

Alex G. Krause, Jeff T. Hill, Max Ludwig, Amir H. Safavi-Naeini, Jasper Chan, Florian Marquardt, and Oskar Painter, Phys. Rev. Lett. 115, 233601 (2015) Journal PDF

  • Optomechanical Dirac Physics

Michael Schmidt, Vittorio Peano, and Florian Marquardt, New Journal of Physics 17, 023025 (2015) Journal PDF

  • Pattern phase diagram for 2D arrays of coupled limit-cycle oscillators

Roland Lauter, Christian Brendel, Steven J. M. Habraken, and Florian Marquardt, Phys. Rev. E 92, 012902 (2015) Journal PDF

2014

  • Cavity optomechanics

Markus Aspelmeyer, Tobias Kippenberg, and Florian Marquardt, Reviews of Modern Physics 86, 1391 (2014) Journal PDF

  • Focus on optomechanics

Ivan Favero and Florian Marquardt, New Journal of Physics 16, 085006 (2014) Journal PDF

  • Decoherence in a double-dot Aharonov-Bohm interferometer: Numerical renormalization group study

Björn Kubala, David Roosen, Michael Sindel, Walter Hofstetter, and Florian Marquardt, Phys. Rev. B 90, 035417 (2014) Journal PDF

  • Entanglement rate for Gaussian continuous variable beams

Zhi Jiao Deng, Steven J. M. Habraken and Florian Marquardt,New Journal of Physics 18, 063022 (2016) Journal PDF

  • Cavity Optomechanics: Nano- and Micromechanical Resonators Interacting with Light (book)

Editors: Markus Aspelmeyer, Tobias J. Kippenberg, Florian Marquardt, Springer 2014. Springer Website for this Book

  • Single-site-resolved measurement of the current statistics in optical lattices

Stefan Kessler and Florian Marquardt, Phys. Rev. A 89, 061601(R) (2014) Journal PDF

  • Quantum Optomechanics (Les Houches Lecture Notes)

Florian Marquardt, in Quantum Machines: Measurement and Control of Engineered Quantum Systems, eds. Michel Devoret, Benjamin Huard, Robert Schoelkopf, and Leticia F. Cugliandolo, Oxford University Press 2014. See Draft PDF and link to publisher website.

  • Synchronizing a single-electron shuttle to an external drive

Michael J. Moeckel, Darren R. Southworth, Eva M. Weig, and Florian Marquardt, New Journal of Physics 16, 043009 (2014) Journal PDF

  • Laser Theory for Optomechanics: Limit Cycles in the Quantum Regime

Niels Lörch, Jiang Qian, Aashish Clerk, Florian Marquardt, and Klemens Hammerer, Phys. Rev. X 4, 011015 (2014) Journal PDF

  • Dissipative optomechanical squeezing of light

Andreas Kronwald, Florian Marquardt, and Aashish A. Clerk, New J. Phys. 16 (2014) 063058 Journal PDF

2013

  • The effect of Landau–Zener dynamics on phonon lasing

Huaizhi Wu, Georg Heinrich, and Florian Marquardt, New Journal of Physics 15, 123022 (2013) Journal PDF

  • Optomechanical Metamaterials: Dirac polaritons, Gauge fields, and Instabilities

Michael Schmidt, Vittorio Peano and Florian Marquardt, arXiv:1311.7095 Journal PDF

  • Photonic Cavity Synchronization of Nanomechanical Oscillators

M. Bagheri, M. Poot, L. Fan, F. Marquardt, H. X. Tang, Phys. Rev. Lett. 111, 213902 (2013) Journal PDF

  • Quantum many-body dynamics in optomechanical arrays

Max Ludwig and Florian Marquardt, Phys. Rev. Lett. 111, 073603 (2013) Journal PDF

  • Arbitrarily large steady-state bosonic squeezing via dissipation

Andreas Kronwald, Florian Marquardt, and Aashish A. Clerk, Phys. Rev. A 88, 063833 (2013) Journal PDF

  • Creation and dynamics of remote spin-entangled pairs in the expansion of strongly correlated fermions in an optical lattice

Stefan Kessler, Ian P. McCulloch, and Florian Marquardt, New J. Phys. 15, 053043 (2013) Journal PDF

  • Optomechanically Induced Transparency in the Nonlinear Quantum Regime

Andreas Kronwald and Florian Marquardt, Phys. Rev. Lett. 111, 133601 (2013) Journal PDF

  • The quantum transverse-field Ising chain in circuit QED: effects of disorder on the nonequilibrium dynamics

Oliver Viehmann, Jan von Delft, and Florian Marquardt, New J. Phys. 15, 035013 Journal PDF

  • Gain-tunable optomechanical cooling in a laser cavity

Li Ge, Sanli Faez, Florian Marquardt, Hakan E. Tureci, Phys. Rev. A 87, 053839 (2013) Journal

  • Observing the Nonequilibrium Dynamics of the Quantum Transverse-Field Ising Chain in Circuit QED

Oliver Viehmann, Jan von Delft, and Florian Marquardt, Phys. Rev. Lett. 110, 030601 (2013) Journal PDF

2012

  • Quantum Signatures of the Optomechanical Instability

Jiang Qian, Aashish Clerk, Klemens Hammerer, and Florian Marquardt, Phys. Rev. Lett. 109, 253601 (2012) Journal PDF

  • Dynamics of levitated nanospheres: towards the strong coupling regime

T. S. Monteiro, J. Millen, G. A. T. Pender, Florian Marquardt, D. Chang, and P. F. Barker, New Journal of Physics 15, 015001 Journal PDF

  • Full photon statistics of a light beam transmitted through an optomechanical system

Andreas Kronwald, Max Ludwig, and Florian Marquardt, Phys. Rev. A 87, 013847 (2013) Journal PDF

  • Optomechanical circuits for nanomechanical continuous variable quantum state processing

Michael Schmidt, Max Ludwig, and Florian Marquardt, New J. Phys. 14 125005 (2012) Journal PDF

  • Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical System

Max Ludwig, Amir H. Safavi-Naeini, Oskar Painter and Florian Marquardt, Phys. Rev. Lett. 109, 063601 (2012) Journal PDF

  • Localized phase structures growing out of quantum fluctuations in a quench of tunnel-coupled atomic condensates

Clemens Neuenhahn, Anatoli Polkovnikov and Florian Marquardt, Phys. Rev. Lett. 109, 085304 (2012) Journal PDF

  • Optomechanical cooling of levitated spheres with doubly-resonant fields

G. A. T. Pender, P. F. Barker, Florian Marquardt, J. Millen, and T. S. Monteiro, Phys. Rev. A 85, 021802(R) (2012) Journal PDF

  • Stroboscopic observation of quantum many-body dynamics

Stefan Kessler, Andreas Holzner, Ian P. McCulloch, Jan von Delft, and Florian Marquardt, Phys. Rev. A 85, 011605(R) (2012) Journal PDF Cite

  • Observation of spontaneous Brillouin cooling

Gaurav Bahl, Matthew Tomes, Florian Marquardt, and Tal Carmon, Nature Physics 8, 203 (2012) Journal

2011

  • Superradiant Phase Transitions and the Standard Description of Circuit QED

Oliver Viehmann, Jan von Delft, and Florian Marquardt, Phys. Rev. Lett. 107, 113602 (2011) Journal PDF Cite

  • Quantum Mechanical Theory of Optomechanical Brillouin Cooling

M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, Physical Review A, 84, 063806 (2011) Journal PDF

  • Collective dynamics in optomechanical arrays

Georg Heinrich, Max Ludwig, Jiang Qian, Björn Kubala, Florian Marquardt, Phys. Rev. Lett. 107, 043603 (2011) Journal PDF Cite

  • Dynamics of coupled multimode and hybrid optomechanical systems

Georg Heinrich, Max Ludwig, Huaizhi Wu, K. Hammerer and Florian Marquardt, C. R. Physique 12, 837 (2011) Journal PDF

  • Coupled multimode optomechanics in the microwave regime

Georg Heinrich and Florian Marquardt, Europhys. Lett. 93, 18003 (2011) Journal PDF Cite

2010

  • Entanglement of mechanical oscillators coupled to a non-equilibrium environment

Max Ludwig, K. Hammerer, Florian Marquardt, Phys. Rev. A 82, 012333 (2010) Journal PDF Cite

  • Thermalization of Interacting Fermions and Delocalization in Fock space

Clemens Neuenhahn and Florian Marquardt, Phys. Rev. E 85, 060101(R) (2012) Journal

  • Examples of Quantum Dynamics in Optomechanical Systems

Max Ludwig, Georg Heinrich and F. Marquardt; in Quantum Communication and Quantum Networking (Springer 2010); proceedings of QuantumComm 2009, Naples, Italy; Journal Cite

  • Introduction to Quantum Noise, Measurement and Amplification

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010) Journal PDF (main text) PDF (appendices) Cite

  • Quantum Measurement of Phonon Shot Noise

Aashish Clerk, Florian Marquardt, Jack Harris, Phys. Rev. Lett. 104, 213603 (2010) Journal PDF Cite

  • Electron-Plasmon scattering in chiral 1D systems with nonlinear dispersion

Markus Heyl, Stefan Kehrein, Florian Marquardt, Clemens Neuenhahn, Phys. Rev. B 82, 033409 (2010) Journal PDF Cite

  • Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings: From Diffusive through Ergodic to 0D Behavior

M. Treiber, O.M. Yevtushenko, F. Marquardt, J. von Delft, I.V. Lerner, in "Perspectives of Mesoscopic Physics - Dedicated to Yoseph Imry's 70th Birthday", edited by Amnon Aharony and Ora Entin-Wohlman (World Scientific, 2010), chap. 20, p. 371-396, ISBN-13 978-981-4299-43-5; arXiv:1001.0479 Journal PDF Cite

  • Single-Atom Cavity QED and Opto-Micromechanics

M. Wallquist, K. Hammerer, P. Zoller, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, J. Ye, H. J. Kimble, Phys. Rev. A 81, 023816 (2010) Journal PDF Cite

  • Optimal control of circuit quantum electrodynamics in one and two dimensions

R. Fisher, F. Helmer, S. J. Glaser, F. Marquardt, T. Schulte-Herbrueggen, Phys. Rev. B 81, 085328 (2010) Journal PDF Cite

  • AC-Conductance through an Interacting Quantum Dot

Björn Kubala, Florian Marquardt, Phys. Rev. B 81, 115319 (2010) Journal PDF Cite

  • The photon shuttle: Landau-Zener-Stueckelberg dynamics in an optomechanical system

Georg Heinrich, J. G. E. Harris, Florian Marquardt, Phys. Rev. A 81, 011801(R) (2010) Journal PDF Cite

2009

  • The dephasing rate formula in the many body context

Doron Cohen, Jan von Delft, Florian Marquardt, Yoseph Imry, Phys. Rev. B 80, 245410 (2009) Journal PDF Cite

  • Toolbox of resonant quantum gates in Circuit QED

G. Haack, F. Helmer, M. Mariantoni, F. Marquardt, and E. Solano, Phys. Rev. B 82, 024 514 (2010). Journal PDF Cite

  • Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings

M. Treiber, O. M. Yevtushenko, F. Marquardt, J. v. Delft, and I. V. Lerner, Phys. Rev. B 80, 201305(R) (2009) Journal PDF Cite

  • Optomechanics

F. Marquardt and S. M. Girvin, Physics 2, 40 (2009) Journal PDF Cite

  • Strong coupling of a mechanical oscillator and a single atom

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, H. J. Kimble, Phys. Rev. Lett. 103, 063005 (2009) Journal PDF Cite

  • Optomechanics (proceedings NATO Workshop Tashkent 2008)

B. Kubala, M. Ludwig, and F. Marquardt, arXiv:0902.2163; published in the proceedings of the NATO Advanced Research Workshop ’Recent Advances in Nonlinear Dynamics and Complex System Physics’, Tashkent, Uzbekistan 2008; Springer 2009. Journal PDF Cite

  • Measurement-based Synthesis of multi-qubit Entangled States in Superconducting Cavity QED

F. Helmer and F. Marquardt, Phys. Rev. A 79, 052328 (2009) Journal PDF Cite

  • Recent progress in open quantum systems: Non-Gaussian noise and decoherence in fermionic systems

C. Neuenhahn, B. Kubala, B. Abel, and F. Marquardt, physica status solidi (b) 246, 1018 (2009) Journal PDF Cite

  • Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect

F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, Phys. Rev. A 79, 052115 (2009) Journal PDF Cite

  • Cavity grid for scalable quantum computation with superconducting circuits

F. Helmer, M. Mariantoni, A. G. Fowler, J. v. Delft, E. Solano, and F. Marquardt, EPL 85, 50007 (2009) Journal PDF Cite

  • Universal Dephasing in a Chiral 1D Interacting Fermion System

Clemens Neuenhahn and Florian Marquardt, Physical Review Letters 102, 046806 (2009) Journal PDF Cite

2008

  • Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer

C. Neuenhahn and F. Marquardt, New Journal of Physics 10, 115018 (2008) Journal PDF Cite

  • Introduction to dissipation and decoherence in quantum systems

F. Marquardt and A. Püttmann, arXiv:0809.4403 Journal PDF Cite

  • Optomechanics: Push towards the quantum limit (News&Views)

F. Marquardt, Nature Physics 4, 513 (2008) Journal (no PDF) Cite

  • Dispersive optomechanics: a membrane inside a cavity

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, New Journal of Physics 10, 095008 (2008) Journal PDF Cite

  • Decoherence by Quantum Telegraph Noise: A numerical evaluation

B. Abel and F. Marquardt, Phys. Rev. B 78, 201302 (R) (2008) Journal PDF Cite

  • The optomechanical instability in the quantum regime

M. Ludwig, B. Kubala, and F. Marquardt, New Journal of Physics 10, 095013 (2008) Journal PDF Cite

  • Quantum theory of optomechanical cooling

F. Marquardt, A. A. Clerk, and S. M. Girvin, Journal of Modern Optics 55, 3329 (2008) Journal PDF Cite

  • Back-action evasion and squeezing of a mechanical resonator using a cavity detector

A. A. Clerk, F. Marquardt, and K. Jacobs, New Journal of Physics 10, 095010 (2008) Journal PDF Cite

  • Self-Induced Oscillations in an Optomechanical System driven by Bolometric Backaction

Constanze Metzger, Max Ludwig, Clemens Neuenhahn, Alexander Ortlieb, Ivan Favero, Khaled Karrai, and Florian Marquardt, Phys. Rev. Lett. 101, 133903 (2008) Journal PDF Cite

  • Mesoscopic Spin-Boson Models of Trapped Ions

D. Porras, F. Marquardt, J. von Delft, and J.I. Cirac, Phys. Rev. A (R) 78, 010101 (2008) Journal PDF Cite

  • Strong dispersive coupling of a high finesse cavity to a micromechanical membrane

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Nature 452, 72 (2008) Journal PDF Cite

  • Measuring the size of a quantum superposition of two many-body states

F. Marquardt, B. Abel, and J. v. Delft, Phys. Rev. A 78, 012109 (2008) Journal PDF Cite

2007

  • Quantum Theory of cavity-assisted sideband cooling of mechanical motion

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007) Journal PDF Cite

  • Coherence oscillations in dephasing by non-Gaussian shot noise

I. Neder and F. Marquardt, New Journal of Physics 9, 112 (2007) Journal PDF Cite

  • Controlled Dephasing of Electrons by Non-Gaussian Shot Noise

I. Neder, F. Marquardt, M. Heiblum, D. Mahalu, and V. Umansky, Nature Physics 3, 534 (2007) Journal PDF Cite

  • Self-consistent calculation of the electron distribution near a Quantum-Point Contact in the integer Quantum Hall Effect

A. Siddiki and F. Marquardt, Phys. Rev. B 75, 045325 (2007) Journal PDF Cite

  • Efficient on-chip source of microwave photon pairs in superconducting circuit QED

F. Marquardt, Phys. Rev. B 76, 205416 (2007) Journal PDF Cite

  • Decoherence in weak localization I: Pauli principle in influence functional

F. Marquardt, J. v. Delft, R. Smith, and V. Ambegaokar, Phys. Rev. B 76, 195331 (2007) Journal PDF Cite

  • Decoherence in weak localization II: Bethe-Salpeter calculation of Cooperon

J. v. Delft, F. Marquardt, R. Smith, and V. Ambegaokar, Phys. Rev. B 76, 195332 (2007) Journal PDF Cite

2006

  • Equations of motion approach to decoherence and current noise in ballistic interferometers coupled to a quantum bath

F. Marquardt, Phys. Rev. B 74, 125319 (2006) Journal PDF Cite

  • Decoherence of fermions subject to a quantum bath

F. Marquardt, in Advances in Solid State Physics (Springer), Vol. 46, ed. R. Haug [cond-mat/0604626] Journal PDF Cite

  • Correlation induced resonances in transport through coupled quantum dots

V. Meden and F. Marquardt, Phys. Rev. Lett. 96, 146801 (2006) Journal PDF Cite

  • Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities

F. Marquardt, J. G. E. Harris, and S. M. Girvin, Phys. Rev. Lett. 96, 103901 (2006) Journal PDF Cite

2005

  • Fermionic Mach-Zehnder interferometer subject to a quantum bath

F. Marquardt, Europhysics Letters 72, 788 (2005) Journal PDF Cite

  • A many-fermion generalization of the Caldeira-Leggett model

F. Marquardt and D. S. Golubev, Phys. Rev. A 72, 022113 (2005) Journal PDF Cite

  • Spin Relaxation in a Quantum Dot due to Nyquist Noise

F. Marquardt and V. A. Abalmassov, Phys. Rev. B 71, 165325 (2005) Journal PDF Cite

Before arrival as group leader in Munich (2001-2004)

2004

  • Perturbative corrections to the Gutzwiller mean-field solution of the Mott-Hubbard model

C. Schroll, F. Marquardt, and C. Bruder, Phys. Rev. A 70, 053609 (2004) Journal PDF Cite

  • Effects of dephasing on shot noise in an electronic Mach-Zehnder interferometer

F. Marquardt and C. Bruder, Phys. Rev. B 70, 125305 (2004) Journal PDF Cite

  • Relaxation and Dephasing in a Many-Fermion Generalization of the Caldeira-Leggett Model

F. Marquardt and D. S. Golubev, Phys. Rev. Lett. 93, 130404 (2004) Journal PDF Cite

  • Influence of dephasing on shot noise in an electronic Mach-Zehnder interferometer

F. Marquardt and C. Bruder, Phys. Rev. Lett. 92, 056805 (2004) Journal PDF Cite

  • Electron-nuclei spin relaxation through phonon-assisted hyperfine interaction in a quantum dot

V. A. Abalmassov and F. Marquardt, Phys. Rev. B 70, 075313 (2004) Journal PDF Cite

2003

  • Dephasing in sequential tunneling through a double-dot interferometer

F. Marquardt and C. Bruder, Phys. Rev. B 68, 195305 (2003) Journal PDF Cite

2002

  • Non-Markoffian effects of a simple nonlinear bath

H. Gassmann, F. Marquardt, and C. Bruder, Phys. Rev. E 66, 041111 (2002) Journal PDF Cite

  • Separation quality of a geometric ratchet

C. Keller, F. Marquardt, and C. Bruder, Phys. Rev. E 65, 041927 (2002) Journal PDF Cite

  • Visibility of the Aharonov-Bohm effect in a ring coupled to a fluctuating magnetic flux

F. Marquardt and C. Bruder, Journal Of Low Temperature Physics 126, 1325--1337 (2002) Journal PDF Cite

  • Aharonov-Bohm ring with fluctuating flux

F. Marquardt and C. Bruder, Phys. Rev. B 65, 125315 (2002) Journal PDF Cite

2001

  • Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

F. Marquardt and C. Bruder, Phys. Rev. B 63, 054514 (2001) Journal PDF Cite